Chemistry: 1001 Practice Problems For Dummies (+ Free Online Practice)
Book image
Explore Book Buy On Amazon
Oxidation numbers are bookkeeping numbers. They allow chemists to do things such as balance redox (reduction/oxidation) equations. Oxidation numbers are positive or negative numbers, but don’t confuse them with positive or negative charges on ions or valences.

Oxidation numbers are assigned to elements using these rules:

  • Rule 1: The oxidation number of an element in its free (uncombined) state is zero — for example, Al(s) or Zn(s). This is also true for elements found in nature as diatomic (two-atom) elements

    image0.png

    and for sulfur, found as:

    image1.png
  • Rule 2: The oxidation number of a monatomic (one-atom) ion is the same as the charge on the ion, for example:

    image2.png
    image3.png
  • Rule 3: The sum of all oxidation numbers in a neutral compound is zero. The sum of all oxidation numbers in a polyatomic (many-atom) ion is equal to the charge on the ion. This rule often allows chemists to calculate the oxidation number of an atom that may have multiple oxidation states, if the other atoms in the ion have known oxidation numbers.

  • Rule 4: The oxidation number of an alkali metal (IA family) in a compound is +1; the oxidation number of an alkaline earth metal (IIA family) in a compound is +2.

  • Rule 5: The oxidation number of oxygen in a compound is usually –2. If, however, the oxygen is in a class of compounds called peroxides (for example, hydrogen peroxide), then the oxygen has an oxidation number of –1. If the oxygen is bonded to fluorine, the number is +1.

  • Rule 6: The oxidation state of hydrogen in a compound is usually +1. If the hydrogen is part of a binary metal hydride (compound of hydrogen and some metal), then the oxidation state of hydrogen is –1.

  • Rule 7: The oxidation number of fluorine is always –1. Chlorine, bromine, and iodine usually have an oxidation number of –1, unless they’re in combination with an oxygen or fluorine.

These rules give you another way to define oxidation and reduction — in terms of oxidation numbers. For example, consider this reaction, which shows oxidation by the loss of electrons:
image4.png

Notice that the zinc metal (the reactant) has an oxidation number of zero (rule 1), and the zinc cation (the product) has an oxidation number of +2 (rule 2). In general, you can say that a substance is oxidized when there’s an increase in its oxidation number.

Reduction works the same way. Consider this reaction:

image5.png

The copper is going from an oxidation number of +2 to zero. A substance is reduced if there’s a decrease in its oxidation number.

About This Article

This article can be found in the category: