Home

Fermions and Bosons

|
Updated:  
2016-03-26 14:08:43
|
String Theory For Dummies
Explore Book
Buy On Amazon

In analogy with orbital angular momentum, you can assume that m (the z-axis component of spin) can take the values –s, –s + 1, ..., s – 1, and s, where s is the total spin quantum number. For electrons, physicists Otto Stern and Walther Gerlach observed two spots, so you have 2s + 1 = 2, which means that s = 1/2. And therefore, m can be +1/2 or –1/2. So here are the possible eigenstates for electrons in terms of spin:

image0.png

So do all subatomic particles have s = 1/2? Nope. Here are their options:

  • Fermions. In physics, particles with half-integer spin are called fermions. They include electrons, protons, neutrons, and so on, even quarks. For example, electrons, protons, and neutrons have spin s = 1/2, and delta particles have s = 3/2.

  • Bosons. Particles with integer spin are called bosons. They include photons, pi mesons, and so on; even the postulated particles involved with the force of gravity, gravitons, are supposed to have integer spin. For example, pi mesons have spin s = 0, photons have s = 1, and so forth.

So for electrons, the spin eigenstates are

image1.png

For photons, the eigenstates are |1, 1 >, |1, 0 >, and |1, –1 >.

Therefore, the possible eigenstates depend on the particle you’re working with.

About This Article

This article is from the book: 

About the book author:

Dr. Steven Holzner has written more than 40 books about physics and programming. He was a contributing editor at PC Magazine and was on the faculty at both MIT and Cornell. He has authored Dummies titles including Physics For Dummies and Physics Essentials For Dummies. Dr. Holzner received his PhD at Cornell.