Home

Defining Homogeneous and Nonhomogeneous Differential Equations

|
Updated:  
2016-03-26 20:38:37
|
Calculus II Workbook For Dummies
Explore Book
Buy On Amazon

In order to identify a nonhomogeneous differential equation, you first need to know what a homogeneous differential equation looks like. You also often need to solve one before you can solve the other.

Homogeneous differential equations involve only derivatives of y and terms involving y, and they're set to 0, as in this equation:

image0.png

Nonhomogeneous differential equations are the same as homogeneous differential equations, except they can have terms involving only x (and constants) on the right side, as in this equation:

image1.png

You also can write nonhomogeneous differential equations in this format: y'' + p(x)y' + q(x)y = g(x). The general solution of this nonhomogeneous differential equation is

image2.png

In this solution, c1y1(x) + c2y2(x) is the general solution of the corresponding homogeneous differential equation:

image3.png

And yp(x) is a specific solution to the nonhomogeneous equation.

About This Article

This article is from the book: 

About the book author:

Dr. Steven Holzner has written more than 40 books about physics and programming. He was a contributing editor at PC Magazine and was on the faculty at both MIT and Cornell. He has authored Dummies titles including Physics For Dummies and Physics Essentials For Dummies. Dr. Holzner received his PhD at Cornell.