You can tell that two functions are inverse functions when each one undoes what the other does. When you graph inverse functions, each is a mirror image of the other. Here are some examples of inverse functions:
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331ff_202243.image0.png)
You can write all of this in one step as:
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331e6_202244.image1.png)
If you write this in one step, you get:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331ea_202245.image2.png)
Don’t confuse the superscript –1 in a function with exponent –1.
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331ef_202246.image3.png)
When you graph inverse functions, each is the mirror image of the other, reflected over the line
y = x.
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f4b2db460b240331dd_202247.image4.png)
These functions are graphed below:
![image5.jpg](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331f3_202248.image5.jpeg)
If you rotate the graph in the figure counterclockwise so that the line y = x is vertical, you can easily see that these functions are mirror images of each other. One consequence of this symmetry is that if a point like (2, 4) is on one of the functions, then the point (4, 2) will be on the other.
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669e25f5b2db460b240331f9_202249.image6.png)