Home

Using the Angle-Angle-Side Method to Prove Triangles Congruent

|
Updated:  
2016-03-26 20:24:49
|
From The Book:  
No items found.
Geometry Essentials For Dummies
Explore Book
Buy On Amazon

The AAS (Angle-Angle-Side) theorem states that if two angles and a nonincluded side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent. The following figure shows you how AAS works.

image0.jpg

Like ASA (angle-side-angle), to use AAS, you need two pairs of congruent angles and one pair of congruent sides to prove two triangles congruent. But for AAS, the two angles and one side in each triangle must go in the order angle-angle-side (going around the triangle either clockwise or counterclockwise). Another way to look at it is that if you’ve got two angles and a side and you don’t have ASA, it’s got to be AAS.

ASS (angle-side-side) and SSA (side-side-angle) don’t prove anything, so don’t try using ASS (or its backward twin, SSA) to prove triangles congruent. You can use SSS (side-side-side), SAS (side-angle-side), ASA (angle-side-angle), and AAS (or SAA, the backward twin of AAS) to prove triangles congruent, but not ASS. In short, every three-letter combination of A’s and S’s proves something unless it spells ass or is ass backward. (By the way, AAA proves triangles similar, not congruent.)

Try to solve the following proof by first looking for all isosceles triangles (with the two isosceles triangle theorems in mind) and for all pairs of congruent triangles (with CPCTC — Corresponding Parts of Congruent Triangles are Congruent — in mind).

image1.png

image2.jpg

Here’s a game plan that shows how you might think through this proof:

  • Take note of isosceles triangles and pairs of congruent triangles.

    image3.png

    You should also notice the two congruent-looking triangles (triangle QRV and triangle UTV) and then realize that showing them congruent and using CPCTC is very likely the ticket.

  • Look at the prove statement and work backwards. To prove the midpoint, you need

    image4.png

    on the second-to-last line, and you could get that by CPCTC if you knew that triangle QRV and triangle UTV were congruent.

  • Figure out how to prove the triangles congruent. You already have (from the first bullet) a pair of congruent angles (angle Q and angle U) and a pair of congruent sides

    image5.png

    Because of where these angles and sides are, SAS and ASA won’t work, so the key has to be AAS. To use AAS, you’d need

    image6.png

    Can you get that? Sure. Check out the givens: You subtract congruent angles VRT and VTR from congruent angles QRT and UTR. Checkmate.

Here’s the formal proof:

Statement 1:

image7.png

Reason for statement 1: Given.

Statement 2:

image8.png

Reason for statement 2: If angles, then sides.

Statement 3:

image9.png

Reason for statement 3: Given.

Statement 4:

Reason for statement 4: If two congruent angles (angle VRT and angle VTR) are subtracted from two other congruent angles (angle QRT and angle UTR), then the differences (angle QRV and angle UTV) are congruent.

Statement 5:

image10.png

Reason for statement 5: Given.

Statement 6:

image11.png

Reason for statement 6: If sides, then angles.

Statement 7:

image12.png

Reason for statement 7: AAS (using lines 6, 4, and 2).

Statement 8:

image13.png

Reason for statement 8: CPCTC.

Statement 9:

image14.png

Reason for statement 9: Definition of midpoint.

About This Article

This article is from the book: 

No items found.

About the book author:

Mark Ryan has more than three decades’ experience as a calculus teacher and tutor. He has a gift for mathematics and a gift for explaining it in plain English. He tutors students in all junior high and high school math courses as well as math test prep, and he’s the founder of The Math Center on Chicago’s North Shore. Ryan is the author of Calculus For Dummies, Calculus Essentials For Dummies, Geometry For Dummies, and several other math books.