Every cell in your body is like a tiny factory, converting raw materials to useful molecules such as proteins and thousands of other products. The raw materials (nutrients) come from the food you eat, and the cells use the nutrients in metabolic reactions. During these reactions, some of the energy from catabolized nutrients is used to generate a compound called adenosine triphosphate (ATP). This molecule is the one your cells can actually use to power all those chemical reactions.
So, nutrients are catabolized (broken down), ATP is formed (anabolized), and when needed, ATP is catabolized (for energy). This principle of linked anabolic and catabolic reactions is one of the cornerstones of human physiology and is required to maintain life. Cellular metabolism also makes waste products that must be removed (exported) from the cell and ultimately from the body.
ATP works like a rechargeable battery. It contains three phosphates aligned in a row (as shown). Breaking one of them off accesses the energy, leaving behind adenosine diphosphate (ADP) and a phosphate (P) by itself. However, just like you can plug in your phone to recharge its battery, the energy in the bonds of glucose is used to reattach the P — re-creating ATP (albeit in an incredibly complicated way).