Inorganic Chemistry For Dummies
Book image
Explore Book Buy On Amazon
Electronegativity is the strength an atom has to attract a bonding pair of electrons to itself. When a chlorine atom covalently bonds to another chlorine atom, the shared electron pair is shared equally. The electron density that comprises the covalent bond is located halfway between the two atoms.

But what happens when the two atoms involved in a chemical bond aren’t the same? The two positively charged nuclei have different attractive forces; they “pull” on the electron pair to different degrees. The end result is that the electron pair is shifted toward one atom.

Attracting electrons: Electronegativities

The larger the value of the electronegativity, the greater the atom’s strength to attract a bonding pair of electrons. The following figure shows the electronegativity values of the various elements below each element symbol on the periodic table. With a few exceptions, the electronegativities increase, from left to right, in a period, and decrease, from top to bottom, in a family.

Electronegativities give information about what will happen to the bonding pair of electrons when two atoms bond. A bond in which the electron pair is equally shared is called a nonpolar covalent bond. You have a nonpolar covalent bond anytime the two atoms involved in the bond are the same or anytime the difference in the electronegativities of the atoms involved in the bond is very small.

image0.jpg

Now consider hydrogen chloride (HCl). Hydrogen has an electronegativity of 2.1, and chlorine has an electronegativity of 3.0. The electron pair that is bonding HCl together shifts toward the chlorine atom because the chlorine atom has a larger electronegativity value.

A bond in which the electron pair is shifted toward one atom is called a polar covalent bond. The atom that more strongly attracts the bonding electron pair is slightly more negative, while the other atom is slightly more positive. The larger the difference in the electronegativities, the more negative and positive the atoms become.

Now look at a case in which the two atoms have extremely different electronegativities — sodium chloride (NaCl). Sodium chloride is ionically bonded. An electron has transferred from sodium to chlorine. Sodium has an electronegativity of 1.0, and chlorine has an electronegativity of 3.0.

That’s an electronegativity difference of 2.0 (3.0 – 1.0), making the bond between the two atoms very, very polar. In fact, the electronegativity difference provides another way of predicting the kind of bond that will form between two elements, as indicated in the following table.

Electronegativity Difference Type of Bond Formed
0.0 to 0.2 nonpolar covalent
0.3 to 1.4 polar covalent
> 1.5 ionic
The presence of a polar covalent bond in a molecule can have some pretty dramatic effects on the properties of a molecule.

Polar covalent bonding

If the two atoms involved in the covalent bond are not the same, the bonding pair of electrons are pulled toward one atom, with that atom taking on a slight (partial) negative charge and the other atom taking on a partial positive charge.

In most cases, the molecule has a positive end and a negative end, called a dipole (think of a magnet). The following figure shows a couple of examples of molecules in which dipoles have formed. (The little Greek symbol by the charges refers to a partial charge.)

Polar covalent bonding in hydrogen fluoride and ammonia.

Polar covalent bonding in hydrogen fluoride and ammonia.
In hydrogen fluoride (HF), the bonding electron pair is pulled much closer to the fluorine atom than to the hydrogen atom, so the fluorine end becomes partially negatively charged and the hydrogen end becomes partially positively charged.

The same thing takes place in ammonia, known as

image2.png

The nitrogen has a greater electronegativity than hydrogen, so the bonding pairs of electrons are more attracted to it than to the hydrogen atoms. The nitrogen atom takes on a partial negative charge, and the hydrogen atoms take on a partial positive charge.

The presence of a polar covalent bond explains why some substances act the way they do in a chemical reaction: because this type of molecule has a positive end and a negative end, it can attract the part of another molecule with the opposite charge.

This type of molecule can act as a weak electrolyte because a polar covalent bond allows the substance to act as a conductor. So if a chemist wants a material to act as a good insulator (a device used to separate conductors), the chemist would look for a material with as weak a polar covalent bond as possible.

About This Article

This article can be found in the category: