In a hydrogen atom, the wave functions change as you change the orbital radius, r. So what do the hydrogen wave functions look like? Given that
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e196_397915.image0.png)
looks like this:
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e199_397916.image1.png)
Here are some other hydrogen wave functions:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e1a5_397917.image2.png)
Note that
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b00a1d7d1ef9d84941_397935.image3.png)
behaves like rl for small r and therefore goes to zero. And for large r,
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b00a1d7d1ef9d84941_397935.image3.png)
decays exponentially to zero. So you’ve solved the problem of the wave function diverging as r becomes large — and all because of the quantization condition, which cut the expression for f(r) from an exponent to a polynomial of limited order. Not bad.
![The radial wave function R<sub>10</sub>(<i>r</i>).](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e18a_397920.image5.jpeg)
You can see the radial wave function R10(r) in the first figure. R20(r) appears in the second figure. And you can see R21(r) in the last figure.
![R<sub>20</sub>(<i>r</i>).](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e192_397921.image6.jpeg)
![R<sub>21</sub>(<i>r</i>).](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46b1ccb638857343e18f_397922.image7.jpeg)