The scattering amplitude of spinless particles is crucial to understanding scattering from the quantum physics point of view. To see that, take a look at the current densities, Jinc (the flux density of a given incident particle) and Jsc (the current density for a given scattered particle):
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe2fb_398256.image0.png)
(Remember that the asterisk symbol [*] means the complex conjugate. A complex conjugate flips the sign connecting the real and imaginary parts of a complex number.)
Inserting your expressions for
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe363_398257.image1.png)
into these equations gives you the following, where
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe358_398258.image2.png)
is the scattering amplitude:
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe316_398259.image3.png)
Now in terms of the current density, the number of particles
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe300_398260.image4.png)
scattered into
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe324_398261.image5.png)
and passing through an area
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe30b_398262.image6.png)
Plugging in
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe352_398263.image7.png)
into the preceding equation gives you
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe343_398264.image8.png)
Also, recall that
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe32c_398265.image9.png)
You get
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe320_398266.image10.png)
And here's the trick — for elastic scattering, k = k0, which means that this is your final result:
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe34e_398267.image11.png)
The problem of determining the differential cross section breaks down to determining the scattering amplitude.
To find the scattering amplitude — and therefore the differential cross section — of spinless particles, you work on solving the Schrödinger equation:
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe36a_398268.image12.png)
You can also write this as
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe348_398269.image13.png)
You can express the solution to that differential equation as the sum of a homogeneous solution and a particular solution:
![image14.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe35e_398270.image14.png)
The homogeneous solution satisfies this equation:
![image15.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe332_398271.image15.png)
And the homogeneous solution is a plane wave — that is, it corresponds to the incident plane wave:
![image16.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe35b_398272.image16.png)
To take a look at the scattering that happens, you have to find the particular solution. You can do that in terms of Green's functions, so the solution to
![image17.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe33d_398273.image17.png)
This integral breaks down to
![image18.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe340_398274.image18.png)
You can solve the preceding equation in terms of incoming and/or outgoing waves. Because the scattered particle is an outgoing wave, the Green's function takes this form:
![image19.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe366_398277.image21.png)
You already know that
![image20.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe34b_398276.image20.png)
So substituting
![image21.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe366_398277.image21.png)
into the preceding equation gives you
![image22.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a857331d6489bfe355_398278.image22.png)