In quantum physics, you need to know how to use linear operators. An operator A is said to be linear if it meets the following condition:
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa160_396181.image0.png)
For instance, the expression
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa15c_396182.image1.png)
is actually a linear operator. In order to understand this, you need to know just a little more about what happens when you take the products of bras and kets. Firstly, if you take the product of the bra,
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa154_396183.image2.png)
where c is a complex number, then you get the answer,
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa148_396184.image3.png)
Secondly, if you take the product of the bra,
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa16a_396185.image4.png)
then you get the answer,
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa167_396186.image5.png)
Now that you know this you can test to see if
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa164_396187.image6.png)
is actually a linear operator. Okay then, you can now apply
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa164_396187.image6.png)
to a linear combination of kets, like so,
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa178_396189.image8.png)
where c1 and c2 are complex numbers. Now that you know how the product of a bra with a sum of two kets goes, you can say,
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa16e_396190.image9.png)
Then, as you know,
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa17e_396191.image10.png)
you can finally write this as,
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa175_396192.image11.png)
This is exactly what a linear operator should do — if you replace A in the above equation defining a linear operator, with
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa150_396193.image12.png)
then the result is the same as the one you just found. So
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7dac9c5ee9b6dfa164_396187.image6.png)
is indeed a linear operator — although a pretty funny looking one!