In quantum physics, if you’re given an operator in matrix form, you can find its eigenvectors and eigenvalues. For example, say you need to solve the following equation:
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4be_394795.image0.png)
First, you can rewrite this equation as the following:
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4e5_394796.image1.png)
I represents the identity matrix, with 1s along its diagonal and 0s otherwise:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4e8_394797.image2.png)
Remember that the solution to
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4bb_394798.image3.png)
exists only if the determinant of the matrix A – aI is 0:
det(A – aI) = 0
How to find the eigenvalues
Any values of a that satisfy the equation det(A – aI) = 0 are eigenvalues of the original equation. Try to find the eigenvalues and eigenvectors of the following matrix:
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4c6_394812.image17.png)
First, convert the matrix into the form A – aI:
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4eb_394800.image5.png)
Next, find the determinant:
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4e1_394801.image6.png)
And this can be factored as follows:
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4f1_394802.image7.png)
You know that det(A – aI) = 0, so the eigenvalues of A are the roots of this equation; namely, a1 = –2 and a2 = –3.
How to find the eigenvectors
How about finding the eigenvectors? To find the eigenvector corresponding to a1, substitute a1 — the first eigenvalue, –2 — into the matrix in the form A – aI:
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4c2_394803.image8.png)
So you have
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4b6_394804.image9.png)
Because every row of this matrix equation must be true, you know that
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4f7_394805.image10.png)
And that means that, up to an arbitrary constant, the eigenvector corresponding to a1 is the following:
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4db_394806.image11.png)
Drop the arbitrary constant, and just write this as a matrix:
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4f4_394807.image12.png)
How about the eigenvector corresponding to a2? Plugging a2, –3, into the matrix in A –aI form, you get the following:
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4ee_394808.image13.png)
Then you have
![image14.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a500_394809.image14.png)
And that means that, up to an arbitrary constant, the eigenvector corresponding to a2 is
![image15.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4d8_394810.image15.png)
Drop the arbitrary constant:
![image16.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4de_394814.image19.png)
So the eigenvalues of this matrix operator
![image17.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4c6_394812.image17.png)
are a1 = –2 and a2 = –3. And the eigenvector corresponding to a1 is
![image18.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4f4_394807.image12.png)
The eigenvector corresponding to a2 is
![image19.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4aa8ab386c609019a4de_394814.image19.png)