In quantum physics, you can use operators to determine the energy eigenstate of a harmonic oscillator in position space. The charm of using the operators a and
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7d842c5df99b53c99c_396248.image3.png)
is that given the ground state, | 0 >, those operators let you find all successive energy states. If you want to find an excited state of a harmonic oscillator, you can start with the ground state, | 0 >, and apply the raising operator,
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03cf_396221.image1.png)
For example, you can do this:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03bd_396222.image2.png)
And so on. In general, you have this relation:
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03eb_396223.image3.png)
Can’t you get a spatial eigenstate of this eigenvector? Something like
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03c0_396224.image4.png)
not just | 0 >? Yes, you can. In other words, you want to find
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03c7_396225.image5.png)
So you need the representations of
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46adac9c5ee9b6dd13b2_398056.image0.png)
in position space.
The p operator is defined as
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03f9_396227.image7.png)
Because
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03fc_396228.image8.png)
you can write
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03f1_396229.image9.png)
And writing
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03b3_396230.image10.png)
this becomes
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03b7_396231.image11.png)
Okay, what about the a operator? You know that
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03c3_396232.image12.png)
And that
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03b0_396233.image13.png)
Therefore,
![image14.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03d5_396234.image14.png)
You can also write this equation as
![image15.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03e1_396235.image15.png)
Okay, so that’s a in the position representation. What’s
![image16.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03f5_396236.image16.png)
That turns out to be this:
![image17.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03dd_396237.image17.png)
Now’s the time to be clever. You want to solve for | 0 > in the position space, or x | 0 >. Here’s the clever part — when you use the lowering operator, a, on | 0 >, you have to get 0 because there’s no lower state than the ground state, so a | 0 > = 0. And applying the x | bra gives you x | a | 0 > = 0.
That’s clever because it’s going to give you a homogeneous differential equation (that is, one that equals zero). First, you substitute for a:
![image18.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03e4_396238.image18.png)
Multiplying both sides by
![image19.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03ff_396239.image19.png)
gives you the following
![image20.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03d2_396240.image20.png)
The solution to this compact differential equation is
![image21.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd03ee_396241.image21.png)
That’s a gaussian function, so the ground state of a quantum mechanical harmonic oscillator is a gaussian curve, as you see in the figure.
![The ground state of a quantum mechanical harmonic oscillator.](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a7fbe209577ccdd0402_396242.image22.jpeg)