In quantum physics, in order to find the second-order corrections to energy levels and wave functions of a perturbed system, En, you need to calculate E(2)n, as well as
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f9b_398098.image0.png)
So how do you do that? You start with three perturbed equations:
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d468fac9c5ee9b6dcffd1_398397.image1.png)
You then combine these three equations to get this jumbo equation:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d468fac9c5ee9b6dcffe3_398398.image2.png)
From the jumbo equation, you can then find the second-order corrections to the energy levels and the wave functions. To find E(2)n, multiply both sides of
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f60_398101.image3.png)
This looks like a tough equation until you realize that
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d487873a4ba461bec8fde_398102.image4.png)
is equal to zero, so you get
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f64_398103.image5.png)
Because
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f7f_398104.image6.png)
is also equal to zero, and again neglecting the first term, you get
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f72_398105.image7.png)
E(2)n is just a number, so you have
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f5a_398106.image8.png)
And of course, because
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f83_398107.image9.png)
you have
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f75_398108.image10.png)
Note that if
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796fa0_398109.image11.png)
is an eigenstate of W, the second-order correction equals zero.
Okay, so
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f8f_398110.image12.png)
How can you make that simpler? Well, from using
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f95_398111.image13.png)
Substituting that equation into
![image14.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f75_398108.image10.png)
gives you
![image15.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f98_398113.image15.png)
Now you have
![image16.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f86_398114.image16.png)
Here's the total energy with the first- and second-order corrections:
![image17.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f89_398115.image17.png)
So from this equation, you can say
![image18.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d46a14be908f41b796f78_398116.image18.png)
That gives you the first- and second-order corrections to the energy, according to perturbation theory.