Daniel Robbins

Articles & Books From Daniel Robbins

Article / Updated 04-14-2023
General relativity was Einstein’s theory of gravity, published in 1915, which extended special relativity to take into account non-inertial frames of reference — areas that are accelerating with respect to each other. General relativity takes the form of field equations, describing the curvature of space-time and the distribution of matter throughout space-time.
Article / Updated 03-26-2016
In 1905, Albert Einstein published the theory of special relativity, which explains how to interpret motion between different inertial frames of reference — that is, places that are moving at constant speeds relative to each other. Einstein explained that when two objects are moving at a constant speed as the relative motion between the two objects, instead of appealing to the ether as an absolute frame of reference that defined what was going on.
Article / Updated 04-27-2023
General relativity was Einstein’s theory of gravity, published in 1915, which extended special relativity to take into account non-inertial frames of reference — areas that are accelerating with respect to each other.General relativity takes the form of field equations, describing the curvature of space-time and the distribution of matter throughout space-time.
Article / Updated 09-14-2023
The multiverse is a theory that suggests our universe is not the only one, and that many universes exist parallel to each other. These distinct universes within the multiverse theory are called parallel universes. A variety of different theories lend themselves to a multiverse viewpoint.Not all physicists really believe that these universes exist.
Article / Updated 03-26-2016
String theory depicts strings of energy that vibrate, but the strings are so tiny that you never perceive the vibrations directly, only their consequences. To understand these vibrations, you have to understand a classical type of wave called a standing wave — a wave that doesn’t appear to be moving. In a standing wave, certain points, called nodes, don’t appear to move at all.
Article / Updated 03-26-2016
The theory of the space-time continuum already existed, but under general relativity Einstein was able to describe gravity as the bending of space-time geometry. Einstein defined a set of field equations, which represented the way that gravity behaved in response to matter in space-time. These field equations could be used to represent the geometry of space-time that was at the heart of the theory of general relativity.
Article / Updated 03-26-2016
In many versions of string theory, the extra dimensions of space are compactified into a very tiny size, so they’re unobservable to our current technology. Trying to look at space smaller than this compactified size would provide results that don’t match our understanding of space-time. The behavior of space-time at these small scales is one of the reasons for a search for quantum gravity.
Article / Updated 03-26-2016
The current version of string theory is called M-theory, introduced in 1995, which is a comprehensive theory that includes the five supersymmetric string theories. M-Theory exists in 11 dimensions. There’s just one problem. No one knows what M-theory is. Scientists are searching for a complete string theory, but they don’t have one yet.
Article / Updated 03-26-2016
Physicists have calculated that throughout the universe, there’s approximately six times as much dark matter as normal visible matter — and string theory may explain where it comes from! Astronomers have discovered that the gravitational effects observed in our universe don’t match the amount of matter seen. To account for these differences, it appears that the universe contains a mysterious form of matter that we can’t observe, called dark matter.
Article / Updated 03-26-2016
In a sense, the introduction of M-theory marks the end of “string theory,” because it ceases to be a theory that contains only fundamental strings. M-theory also contains multidimensional membranes, called branes. Strings are only 1-dimensional objects, and therefore only one of the types of fundamental objects that make up the universe, according to the new M-Theory.