Lillian Pierson

Lillian Pierson is the CEO of Data-Mania, where she supports data professionals in transforming into world-class leaders and entrepreneurs. She has trained well over one million individuals on the topics of AI and data science. Lillian has assisted global leaders in IT, government, media organizations, and nonprofits.

Articles & Books From Lillian Pierson

Data Science Essentials For Dummies
Feel confident navigating the fundamentals of data science Data Science Essentials For Dummies is a quick reference on the core concepts of the exploding and in-demand data science field, which involves data collection and working on dataset cleaning, processing, and visualization. This direct and accessible resource helps you brush up on key topics and is right to the point—eliminating review material, wordy explanations, and fluff—so you get what you need, fast.
Cheat Sheet / Updated 04-12-2024
A wide range of tools is available that are designed to help big businesses and small take advantage of the data science revolution. Among the most essential of these tools are Microsoft Power BI, Tableau, SQL, and the R and Python programming languages.Comparing Microsoft Power BI and ExcelMicrosoft markets Power BI as a way to connect and visualize data using a unified, scalable platform that offers self-service and enterprise business intelligence that can help you gain deep insights into data.
Data Analytics & Visualization All-in-One For Dummies
Install data analytics into your brain with this comprehensive introduction Data Analytics & Visualization All-in-One For Dummies collects the essential information on mining, organizing, and communicating data, all in one place. Clocking in at around 850 pages, this tome of a reference delivers eight books in one, so you can build a solid foundation of knowledge in data wrangling.
Data Science For Dummies
Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to helpWhat if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision?
Article / Updated 04-18-2017
By thinking through the how of a story, you are putting yourself in position to craft better data-driven stories. Looking at your data objectively and considering factors like how it was created helps you to discover interesting insights that you can include in your story. Also, knowing how to quickly find stories in potential data sources helps you to quickly sift through the staggering array of options.
Article / Updated 04-18-2017
A data-journalism piece is only as good as the data that supports it. To publish a compelling story, you must find compelling data on which to build. That isn't always easy, but it's easier if you know how to use scraping and autofeeds to your advantage. Scraping data Web-scraping involves setting up automated programs to scour and extract the exact and custom datasets that you need straight from the Internet so you don't have to do it yourself.
Article / Updated 04-18-2017
The human capacity to question and understand why things are the way they are is a clear delineation point between the human species and other highly cognitive mammals. Answers to questions about why help you to make better-informed decisions. These answers help you to better structure the world around you and help you develop reasoning beyond what you need for mere survival.
Article / Updated 04-18-2017
Data and stories are always more relevant to some places than others. From where is a story derived, and where is it going? If you keep these important facts in mind, the publications you develop are more relevant to their intended audience. The where aspect in data journalism is a bit ambiguous because it can refer to a geographical location or a digital location, or both.
Article / Updated 04-18-2017
As the old adage goes, timing is everything. It's a valuable skill to know how to refurbish old data so that it's interesting to a modern readership. Likewise, in data journalism, it's imperative to keep an eye on contextual relevancy and know when is the optimal time to craft and publish a particular story. When as the context to your story If you want to craft a data journalism piece that really garners a lot of respect and attention from your target audience, consider when — over what time period — your data is relevant.
Article / Updated 04-18-2017
The Washington Post story "The Black Budget" is an incredible example of data science in journalism. When former NSA contractor Edward Snowden leaked a trove of classified documents, he unleashed a storm of controversy not only among the public but also among the data journalists who were tasked with analyzing the documents for stories.