|
Published:
September 7, 2010

Statics For Dummies

Overview

The fast and easy way to ace your statics course

Does the study of statics stress you out? Does just the thought of mechanics make you rigid? Thanks to this book, you can find balance in the study of this often-intimidating subject and ace even the most challenging university-level courses.

Statics For Dummies gives you easy-to-follow, plain-English explanations for everything you need to grasp the study of statics. You'll get a thorough introduction to this foundational branch of engineering and easy-to-follow coverage of solving problems involving forces on bodies

at rest; vector algebra; force systems; equivalent force systems; distributed forces; internal forces; principles of equilibrium; applications to trusses, frames, and beams; and friction.

  • Offers a comprehensible introduction to statics
  • Covers all the major topics you'll encounter in university-level courses
  • Plain-English guidance help you grasp even the most confusing concepts

If you're currently enrolled in a statics course and looking for a friendlier way to get a handle on the subject, Statics For Dummies has you covered.

Read More

About The Author

James H. Allen III, PE, PhD, is a registered professional engineer who teaches courses in the areas of statics, mechanics, structural engineering, and steel design.

Sample Chapters

statics for dummies

CHEAT SHEET

As with any branch of physics, solving statics problems requires you to remember all sorts of calculations, diagrams, and formulas. The key to statics success, then, is keeping your shear and moment diagrams straight from your free-body diagrams and knowing the differences among the calculations for moments, centroids, vectors, and pressures.

HAVE THIS BOOK?

Articles from
the book

The centroid or center of area of a geometric region is the geometric center of an object's shape. Centroid calculations are very common in statics, whether you're calculating the location of a distributed load's resultant or determining an object's center of mass. To compute the center of area of a region (or distributed load), you can compute the x-coordinate (and the other coordinates similarly) from the following equations: For discrete regions: You can break discrete regions into simple shapes such as triangles, rectangles, circles, and so on.
In many statics problems, you must be able to quickly and efficiently create vectors in the Cartesian plane. Luckily, you can accomplish your Cartesian vector creations easily with the handy vector formulas in this list: Force vectors and distance vectors are the most basic vectors that you deal with.
Solving statics problems can be complicated; each problem requires a list of items to account for and equations to create and solve. Solve statics problems with ease by using this checklist: Draw a free-body diagram of the entire system. In addition to dimensions and angles, you must include four major categories of items on a properly constructed free-body diagram: Applied external loads Revealed internal loads Support reactions Self weight Write equilibrium equations to compute as many unknown support reactions as possible.
As with any branch of physics, solving statics problems requires you to remember all sorts of calculations, diagrams, and formulas. The key to statics success, then, is keeping your shear and moment diagrams straight from your free-body diagrams and knowing the differences among the calculations for moments, centroids, vectors, and pressures.
When working submerged surface problems in statics, remember that all submerged surfaces have a fluid acting upon them, causing pressure. You must compute two pressures: the hydrostatic pressure resultant and the fluid self weight. Hydrostatic pressure resultant: The hydrostatic pressure resultant acts horizontally at 0.
Shear and moment diagrams are a statics tool that engineers create to determine the internal shear force and moments at all locations within an object. Start by locating the critical points and then sketching the shear diagram. Critical point locations: Start and stop of structure (extreme ends) Concentrated forces Concentrated moments Start and stop of distributed loads Internal hinges Support locations Points of zero shear (V = 0) — for moment diagrams only.
In statics, moments are effects (of a force) that cause rotation. When computing equilibrium, you must be able to calculate a moment for every force on your free-body diagram. To determine a force's moment, you use one of two different calculations, as you can see in the following list. Scalar calculation (for two dimensions): To calculate the moment about a Point O in scalar calculations, you need the magnitude of the force and the perpendicular distance from Point O to the line of action of the Force F.
https://cdn.prod.website-files.com/6630d85d73068bc09c7c436c/69195ee32d5c606051d9f433_4.%20All%20For%20You.mp3

Frequently Asked Questions

No items found.