Information Technology Articles
These days, information technology (aka IT) is everybody's business. Check out these articles on some of the coolest new tech making the rounds today.
Articles From Information Technology
Filter Results
Cheat Sheet / Updated 10-17-2024
The first public release of ChatGPT ignited the world’s demand for increasingly sophisticated Generative AI (GenAI) models and tools, and the market was quick to deliver. But what’s the use of having so many GenAI tools if you get stuck using them? And make no mistake, everyone gets stuck quite often! This cheat sheet helps you get the very best results by introducing you to advanced (but pretty easy) prompting techniques and giving you useful tips on how to choose models or applications that are right for the task.
View Cheat SheetArticle / Updated 09-24-2024
Both linear and logistic regression see a lot of use in data science but are commonly used for different kinds of problems. You need to know and understand both types of regression to perform a full range of data science tasks. Of the two, logistic regression is harder to understand in many respects because it necessarily uses a more complex equation model. The following information gives you a basic overview of how linear and logistic regression differ. The equation model Any discussion of the difference between linear and logistic regression must start with the underlying equation model. The equation for linear regression is straightforward. y = a + bx You may see this equation in other forms and you may see it called ordinary least squares regression, but the essential concept is always the same. Depending on the source you use, some of the equations used to express logistic regression can become downright terrifying unless you’re a math major. However, the start of this discussion can use one of the simplest views of logistic regression: p = f(a + bx) >p, is equal to the logistic function, f, applied to two model parameters, a and b, and one explanatory variable, x. When you look at this particular model, you see that it really isn’t all that different from the linear regression model, except that you now feed the result of the linear regression through the logistic function to obtain the required curve. The output (dependent variable) is a probability ranging from 0 (not going to happen) to 1 (definitely will happen), or a categorization that says something is either part of the category or not part of the category. (You can also perform multiclass categorization, but focus on the binary response for now.) The best way to view the difference between linear regression output and logistic regression output is to say that the following: Linear regression is continuous. A continuous value can take any value within a specified interval (range) of values. For example, no matter how closely the height of two individuals matches, you can always find someone whose height fits between those two individuals. Examples of continuous values include: Height Weight Waist size Logistic regression is discrete. A discrete value has specific values that it can assume. For example, a hospital can admit only a specific number of patients in a given day. You can’t admit half a patient (at least, not alive). Examples of discrete values include: Number of people at the fair Number of jellybeans in the jar Colors of automobiles produced by a vendor The logistic function Of course, now you need to know about the logistic function. You can find a variety of forms of this function as well, but here’s the easiest one to understand: f(x) = e<sup>x</sup> / e<sup>x</sup> + 1 You already know about f, which is the logistic function, and x equals the algorithm you want to use, which is a + bx in this case. That leaves e, which is the natural logarithm and has an irrational value of 2.718, for the sake of discussion (check out a better approximation of the whole value). Another way you see this function expressed is f(x) = 1 / (1 + e<sup>-x</sup>) Both forms are correct, but the first form is easier to use. Consider a simple problem in which a, the y-intercept, is 0, and ">b, the slope, is 1. The example uses x values from –6 to 6. Consequently, the first f(x) value would look like this when calculated (all values are rounded): (1) e<sup>-6</sup> / (1 + e<sup>-6</sup>) (2) 0.00248 / 1 + 0.00248 (3) 0.002474 As you might expect, an xvalue of 0 would result in an f(x) value of 0.5, and an x value of 6 would result in an f(x) value of 0.9975. Obviously, a linear regression would show different results for precisely the same x values. If you calculate and plot all the results from both logistic and linear regression using the following code, you receive a plot like the one below. import matplotlib.pyplot as plt %matplotlib inline from math import exp x_values = range(-6, 7) lin_values = [(0 + 1*x) / 13 for x in range(0, 13)] log_values = [exp(0 + 1*x) / (1 + exp(0 + 1*x)) for x in x_values] plt.plot(x_values, lin_values, 'b-^') plt.plot(x_values, log_values, 'g-*') plt.legend(['Linear', 'Logistic']) plt.show() This example relies on list comprehension to calculate the values because it makes the calculations clearer. The linear regression uses a different numeric range because you must normalize the values to appear in the 0 to 1 range for comparison. This is also why you divide the calculated values by 13. The exp(x) call used for the logistic regression raises e to the power of x, e<sup>x</sup>, as needed for the logistic function. The model discussed here is simplified, and some math majors out there are probably throwing a temper tantrum of the most profound proportions right now. The Python or R package you use will actually take care of the math in the background, so really, what you need to know is how the math works at a basic level so that you can understand how to use the packages. This section provides what you need to use the packages. However, if you insist on carrying out the calculations the old way, chalk to chalkboard, you’ll likely need a lot more information. The problems that logistic regression solves You can separate logistic regression into several categories. The first is simple logistic regression, in which you have one dependent variable and one independent variable, much as you see in simple linear regression. However, because of how you calculate the logistic regression, you can expect only two kinds of output: Classification: Decides between two available outcomes, such as male or female, yes or no, or high or low. The outcome is dependent on which side of the line a particular data point falls. Probability: Determines the probability that something is true or false. The values true and false can have specific meanings. For example, you might want to know the probability that a particular apple will be yellow or red based on the presence of yellow and red apples in a bin. Fit the curve As part of understanding the difference between linear and logistic regression, consider this grade prediction problem, which lends itself well to linear regression. In the following code, you see the effect of trying to use logistic regression with that data: x1 = range(0,9) y1 = (0.25, 0.33, 0.41, 0.53, 0.59, 0.70, 0.78, 0.86, 0.98) plt.scatter(x1, y1, c='r') lin_values = [0.242 + 0.0933*x for x in x1] log_values = [exp(0.242 + .9033*x) / (1 + exp(0.242 + .9033*x)) for x in range(-4, 5)] plt.plot(x1, lin_values, 'b-^') plt.plot(x1, log_values, 'g-*') plt.legend(['Linear', 'Logistic', 'Org Data']) plt.show() The example has undergone a few changes to make it easier to see precisely what is happening. It relies on the same data that was converted from questions answered correctly on the exam to a percentage. If you have 100 questions and you answer 25 of them correctly, you have answered 25 percent (0.25) of them correctly. The values are normalized to produce values between 0 and 1 percent. As you can see from the image above, the linear regression follows the data points closely. The logistic regression doesn’t. However, logistic regression often is the correct choice when the data points naturally follow the logistic curve, which happens far more often than you might think. You must use the technique that fits your data best, which means using linear regression in this case. A pass/fail example An essential point to remember is that logistic regression works best for probability and classification. Consider that points on an exam ultimately predict passing or failing the course. If you get a certain percentage of the answers correct, you pass, but you fail otherwise. The following code considers the same data used for the example above, but converts it to a pass/fail list. When a student gets at least 70 percent of the questions correct, success is assured. y2 = [0 if x < 0.70 else 1 for x in y1] plt.scatter(x1, y2, c='r') lin_values = [0.242 + 0.0933*x for x in x1] log_values = [exp(0.242 + .9033*x) / (1 + exp(0.242 + .9033*x)) for x in range(-4, 5)] plt.plot(x1, lin_values, 'b-^') plt.plot(x1, log_values, 'g-*') plt.legend(['Linear', 'Logistic', 'Org Data']) plt.show() This is an example of how you can use list comprehensions in Python to obtain a required dataset or data transformation. The list comprehension for y2 starts with the continuous data in y1 and turns it into discrete data. Note that the example uses precisely the same equations as before. All that has changed is the manner in which you view the data, as you can see below. Because of the change in the data, linear regression is no longer the option to choose. Instead, you use logistic regression to fit the data. Take into account that this example really hasn’t done any sort of analysis to optimize the results. The logistic regression fits the data even better if you do so.
View ArticleCheat Sheet / Updated 09-16-2024
The Marketing with AI For Dummies book, by Shiv Singh, offers great advice for using artificial intelligence (AI) in all aspects of marketing efforts. In the book, marketers at any level can find solid guidance for applying the capabilities of AI, whether they want to develop entire marketing campaigns or simply find help for automating repetitive processes. In this Cheat Sheet, find information about planning successful AI implementations, training marketing teams to use AI tools, finding the right partners for your work with AI, and avoiding over-reliance on AI automation.
View Cheat SheetStep by Step / Updated 08-27-2024
Windows usually detects the presence of a network adapter automatically; typically, you don’t have to install device drivers manually for the adapter. When Windows detects a network adapter, Windows automatically creates a network connection and configures it to support basic networking protocols. You may need to change the configuration of a network connection manually, however. The following steps show you how to configure your network adapter on a Windows 10 system:
View Step by StepArticle / Updated 08-19-2024
The landscape of contract lifecycle management (CLM) is rapidly evolving with the advent of advanced technologies like generative AI (Gen AI). Gen AI is a new iteration of AI whose key benefit is the generation of new content based on the patterns and information it’s learned from existing datasets. Gen AI isn’t a trend or a fad. It’s a new technology that represents a seismic shift in many ways. Organizations are no longer asking if they should embrace AI in CLM but rather how swiftly and effectively they can adapt. The golden age of powerful intelligent technology must be embraced, and you must adapt to advance your business. Integrating these technologies into your CLM can make your CLM an even more powerful tool. AI is like giving machines a brain to think and learn, while Gen AI is about giving them creativity to make new things. When you apply Gen AI to CLM and your contracting processes, it truly expedites your third-party paper review, contract redlining, playbook review, negotiation, and more. In this article, you discover how Gen AI’s powerful use cases are wielded in CLM. Tackling Gen AI Use Cases that Impact CLM Gen AI streamlines contract creation, analysis, and risk assessment, revolutionizing how businesses manage contracts. It’s an exciting development that promises efficiency and accuracy in CLM processes. Within CLM, Gen AI’s prominent use cases include the following: Drafting your contracts with ease: Transform how your organization handles your contracts and their processes. Creating contracts through traditional methods is a time-consuming process that requires highly trained experts, but Gen AI can flip that old way of doing things and start automating your contract drafting. Gen AI does this by learning from your existing contracts and then generating new ones based on your specific business needs and specific inputs that you provide to the tool. Improved adoption: Gen AI becomes a critical co-pilot, working with your users without requiring training. By adding this resource capacity, you can increase efficiency through automating repetitive processes, such as expedited contract review and risk analysis. Your business can do more and free up valuable human resources to focus on strategic initiatives. While Gen AI is still new and slowly being adopted, the benefits are compelling for businesses to adopt Gen AI faster. Voice and text-activated operation: You can easily communicate your objectives through voice commands or by typing, and Gen AI provides guided, click-free actions to efficiently achieve your goals. Intelligent search: Gen AI is able to review large amounts of data quicker than before, allowing for less time spent on searches and more time achieving precise results faster. It can identify key provisions and the existence of specific business terms across agreements swiftly, making audits or merger and acquisitions (M&A) transactions much easier. Advanced business intelligence: Gen AI offers more robust contextual insights and actionable recommendations, including summaries of data that it then can use to drive more data-driven decisions. These AI insights can help you negotiate better terms, optimize contract structures, and align legal strategies with broader business objectives. Proactive support and risk management: Gen AI facilitates smooth collaboration during document review, and it can proactively identify legal risks, offering recommendations to ensure compliance and mitigate potential issues. In today’s culture, minimizing risk and ensuring compliance are paramount. Gen AI can leverage advanced algorithms to systematically analyze agreements, flag potential compliance issues, and ensure adherence to legal standards. With Gen AI’s contract analysis and risk assessment, your organization can make better informed decisions about its contracts. Using Gen AI Use Cases to Strengthen Your Teams AI-powered CLM use cases provide value in diverse scenarios. By implementing AI contract software, all your teams benefit: Legal: Legal departments can automate contract analysis, strategy development, and negotiations. AI also ensures that contracts comply with the latest legal standards and regulations. Procurement: Procurement teams can automate the vendor contract lifecycle and third-party paper reviews. AI streamlines the creation, review, and approval of contracts, ensuring that procurement processes are seamless and compliant. Sales: Sales teams leverage AI to accelerate the contract negotiation process. By expediting redlining and ensuring the accuracy of contract terms, sales professionals can close deals more efficiently and with reduced risks. Compliance: AI helps you monitor and ensure adherence to contractual obligations. By providing real-time insights into contract performance, AI-enhanced solutions help identify and mitigate risks associated with non-compliance. Expanding Gen AI in CLM with Malbek You’re ready to elevate your CLM experience and unleash the power of Gen AI. You want to maximize the power of your digital contracts, but you need a solid partner along the way. In this section, you learn more about Malbek and how the company can help you do just that. To learn more about Malbek, you can also visit one of these resources: • www.malbek.io • www.malbek.io/platform Simplify CLM complexity Malbek empowers its customers with a dynamic, centralized, and fully configurable CLM platform that simplifies your CLM processes. CLM can be complex, but with a trusted partner, you can distill critical insights from contracts for actionable decision-making and peak profitability. Accelerate contracting velocity Build and launch contract and approval processes with ease. From intuitive workflows and seamless approvals to swift contract generation, Malbek’s platform empowers enterprises to navigate contracts with unprecedented speed, ensuring efficiency, compliance, and strategic impact at every turn. Unite global teams and improve collaboration Malbek seamlessly integrates with your favorite business apps, such as Salesforce, Microsoft, SAP, NetSuite, Slack, Coupa, OneTrust, Adobe Sign, DocuSign, and more. By connecting your CLM system with the rest of your business, you can maintain a single source of truth and streamline your operations. Improve decision-making and minimize risk Eliminate time-consuming, manual tasks that take away from high-value objectives. With Malbek AI infused throughout the contracting process, you gain immediate access to timely contextual insights and recommendations to have the greatest impact on your business. AI also streamlines negotiations and shortens review cycles. Download your free copy of Contract Lifecycle (CLM) Management For Dummies, Malbek Special Edition today.
View ArticleArticle / Updated 05-31-2024
At work as well as in your personal life, you’ve almost certainly been bombarded with talk about generative artificial intelligence (AI). It’s all over the mainstream media, in trade journals, in C-suite conversations, and on the front lines of whatever work your organization does. There’s no escaping it. The stories make AI sound so miraculous that, in fact, you could be forgiven for thinking it must be a bunch of hype. But the reality is, generative AI can truly be transformational for businesses. You can leave it for textbooks to fill in the details about what AI is and how it works. But in a nutshell, AI relies on building large language models (LLM) with the help of machine learning (ML). AI trains on vast amounts of data, immerses itself, and learns from the data in ways not unlike how humans learn (but a whole lot faster, and ingesting far, far more data). Notice that the title of this article refers to generative AI. This AI doesn’t just make recommendations — it actually creates new data or content, or generates insights by using the power of natural language processing (NLP) and ML. Tackling many tasks What can generative AI really do for your business? What business problems can it solve? For starters, it’s a fantastic headache remedy. Some of the business headaches generative can cure include Production bottlenecks: Got processes that are stuck and unable to keep up with the demands of customers? Generative AI breaks through bottlenecks by automating processes, improving efficiency, facilitating faster and better human decisions, increasing output, maximizing resources, and speeding up development cycles. Tedious tasks: Generative AI can tackle mundane and tedious tasks, freeing up human brainpower for real value-creating initiatives that your people will find more fulfilling. Inconsistencies and noncompliance: Generative AI creates consistency across your organization’s communications and enforces compliance with internal and external standards. It’s easy for discrepancies and errors to pop up and multiply — generative AI can identify these issues, offer insights and recommendations, and even automatically fix them. Training hurdles: Generative AI helps new hires onboard and get up-to-speed quickly by generating training materials and job simulations. Personalized instruction can fill knowledge gaps. Customer-service struggles: When equipped with information-retrieval solutions, the technology can answer questions quickly and can even handle some customer interactions entirely on its own. It also improves live human interactions by empowering agents and creating instant conversation summaries. Exploring the use cases What generative AI can do for your organization boils down to three primary areas: Creating: This is what it sounds like — using AI to come up with something new. It also may mean editing or revising something that has already been created, by a person or AI, perhaps by turning it into a different format. For your marketing team, a generative AI tool can write the first draft of an ebook about a new product, or create a press release or search engine optimization (SEO)-ready web content. It can come up with a knowledge base article on the latest product feature to help the support team, or a best-practices management article for learning and development. It can help the human resources (HR) team write a job description, making sure it’s doing so in inclusive language. The product development team will love how it ingests and crunches a list of features and bug tickets to come up with release notes. Analyzing: This means taking an in-depth look at content of some kind and generating insights. Generative AI can spot trends or reach conclusions of some sort, perhaps even analyze sentiment amid a batch of customer feedback. Marketing may ask the AI platform to process a webinar recording and summarize the key takeaways. The support team can have it scour customer support survey responses to come up with insights on areas of improvement to consider. Generative AI can help learning and development conjure up some FAQs by analyzing and categorizing what’s in an internal wiki. AI can listen to a recording of a job interview and create a summary for a recruiter. Product developers can have it study customer feedback to find insights for what new features to prioritize. Governing: The govern use case includes a focus on compliance, looking for language that runs afoul of legal and regulatory rules. It finds incorrect terminology and statements and works to prevent data loss and global compliance problems. This type of AI work also means checking for factual accuracy, detecting claims that are wrong and suggesting replacement wording. Marketers can use it to find errors and violations in advertising copy, and for HR, AI can flag non-inclusive language in employee communications, then make suggested revisions. The learning and development team may use it to ensure training materials are compliant with industry certification requirements and other vital standards. Making it happen Many generative AI tools are out there right now, and they’re ready for the masses. Countless people subscribe to platforms such as ChatGPT and Google’s Gemini, and Meta AI is now built right into social media platforms. For the use cases outlined in the preceding section, though, it’s essential to seek an enterprise-grade, full-stack generative AI platform rather than a consumer-targeted AI assistant. Your organization will want a platform that can be truly customized to your needs and integrated with your operations, trained on accurate data that’s relevant to your business and industry, and fully in line with your security and compliance requirements. So, do it yourself? That’s not such a great plan, either. Building your own AI stack can be slow and expensive. Look for a partner that can abstract the complexity so you can benefit from the AI-first workflows, not get bogged down building and maintaining infrastructure. When picking a platform, follow these tips: Keep pace with your organizational needs. Get a tool that can deploy custom AI apps in a snap for any use case, including digital assistants, content generation, summarization, and data analysis. Seek the right model. Palmyra LLMs from Writer, for example, are top-ranked on key benchmarks for model performance set by Stanford’s Holistic Evaluation of Language Models. Connect to your company knowledge. An LLM alone can’t deliver accurate answers about information that’s locked inside your business knowledge bases. For that, you need retrieval-augmented generation (RAG), which is basically a way to feed an LLM-based AI app company-specific information that can’t be found in its training data. Check out writer.com/product/graph-based-rag for more information. Be sure it’s fully customizable. You need consistent, high-quality outputs that meet your organization’s specific requirements, and a general consumer tool can’t do that. You also must have AI guardrails that enforce all your rules and standards. Integrate the tool. To fit into your flow, AI apps need to be in your people’s hands however they’re working. You need an enterprise application programming interface (API) and extensions that’ll build tools right into Microsoft Word and Outlook, Google Docs and Chrome, Figma, Contentful, or whatever else your people love to use. Deploy it your way. Look for options that include single-tenant or multi-tenant deployments. Get things done quickly. Look for a platform that can have you up and running in days, not months. Wouldn’t you rather spend your time adopting than tediously building? Keep it secure. Here’s an incredibly vital area where consumer tools can leave your enterprise at great risk. You need an LLM that’s secure, auditable, and never uses your sensitive data in model training. You’ll lose a lot of sleep if your tool doesn’t comply with the standards your organization must follow, whether that means SOC 2 Type II, HIPAA, PCI, GDPR, or CCPA. Find a tool that manages access with single-sign on (SSO), multifactor authentication, and role-based permissions. Writer is the full-stack generative AI platform for enterprises. It empowers your entire organization to accelerate growth, increase productivity, and ensure compliance. For more information on how to transform work with generative AI, download Generative AI For Dummies, Writer Special Edition.
View ArticleCheat Sheet / Updated 04-30-2024
As AI tools grow more complex, effectively communicating with them is becoming a necessary skill for most professions. Learning the art of crafting effective prompts unlocks creativity and enhances decision-making abilities. Whether you’re a developer building the latest AI application, a marketer leveraging chatbots, or a writer automating content creation, the skill of writing AI prompts is indispensable. Poorly worded prompts will never yield the results you’re looking for. The good news is, you can practice and improve your prompting skills and find opportunities to advance in your career.
View Cheat SheetCheat Sheet / Updated 04-12-2024
A wide range of tools is available that are designed to help big businesses and small take advantage of the data science revolution. Among the most essential of these tools are Microsoft Power BI, Tableau, SQL, and the R and Python programming languages.
View Cheat SheetArticle / Updated 03-26-2024
Interest in artificial intelligence (AI) is growing, and the power of AI can, and should, be leveraged for use in customer experience (CX) to benefit your external and internal stakeholders: your customers, agents, and supervisors. Delighting your customers Your customers have a stake in your business, and you wouldn’t be where you are without them. Today’s external stakeholders — your customers — crave digital self-service, and it drives their interactions. Companies may often underestimate this desire. Customers want and expect (even demand) options that meet their personalized needs for up-to-date information and assistance, and they want this without having to talk directly with another person. With AI, you can help make that happen. AI promises usefulness across all types of customer interactions, including searching for information, using a chatbot, interacting with people, and more. With AI for CX, you can host a safe, secure environment for CX to occur. And keep in mind this little techie tidbit: Roughly 30 percent of transactions were supported by automation in 2023, and about 70 percent will be in 2025. The incorporation of AI into your CX is vital to your brand. The NICE Enlighten Suite is trusted AI for business and utilizes the latest GenAI technology and the largest labeled dataset of omnichannel CX interactions to create positive customer experiences. Within the suite, Enlighten Autopilot, focusing on customers, delivers personalized, business-aligned conversational AI experiences to thrill your customers in the following ways: • Meeting customers on their preferred channels • Seamless engagement across all touchpoints • Providing a consistent and unified experience • Having data-driven decision-making • Strengthening brand perception Visit www.nice.com/websites/CX.AI.NOW/ to learn more. Supporting your staff The use of AI can also impact your internal stakeholders, and those folks include your agents and supervisors. Most employees will see the positive effects of AI, but when you deploy AI for CX within your organization, seek to reassure everyone that you expect the technology to benefit them. Don’t forget to ask for feedback on their experiences with it, too. The benefits of such technology include Improving employee experience: AI has the potential to positively impact your employees throughout your organization. Agents’ work experiences can be improved and optimized, which helps the organization as a whole to operate more efficiently. Better management information: Make key information more accessible to more people within your business, including your supervisors. With AI, this information can be delivered faster and more conveniently than ever. Generative AI as part of the CX is a powerful positive for your agents, supervisors, and even your brand. Your organization may be able to realize higher sales, greater customer satisfaction, and a better brand image by taking advantage emerging technologies. You need a trusted AI solution for your business. Enter Enlighten Copilot. This solution’s primary function is to empower agents and supervisors with in-the-moment assistance and coaching to deliver premium interactions and to make their jobs easier by offering a variety of versatile features designed to elevate CX and drive success. Copilot also delivers security, privacy, and compliance to help you meet the legal, regulatory, and safety concerns of your company. When companies start to offer AI-powered capabilities on their own, these concerns may be ignored simply out of a lack of knowledge of what AI entails. Enlighten Copilot also seeks to strengthen, not replace, your employee base by targeting AI toward highly repetitive, lower-touch and lower-value interactions. That leaves your agents free for the higher-touch, higher-value interactions. Supervisors also benefit from AI-driven tools to free themselves from repetitive management tasks and to improve decision making. Visit get.nice.com/Not-All-AI-Copilots-Are-Equal.html for more information.
View ArticleCheat Sheet / Updated 03-22-2024
Generative AI coding tools can improve your productivity as a coder, remind you about syntax, and even help you with testing, debugging, refactoring, and documentation, but it's up to you to know how to use them correctly. Get ten prompt engineering tips that can make the difference between AI spitting out garbage spaghetti code and crafting elegant code that works. AI coding tools present unique challenges and hazards for software development teams, so check out some simple rules to make sure that generative AI doesn't tank your project. Then see what happened when ChatGPT was asked to list the top things human coders do that AI can never replace.
View Cheat Sheet