You can determine what happens to the wave function when you swap particles in a multi-particle atom. Whether the wave function is symmetric or antisymmetric under such operations gives you insight into whether two particles can occupy the same quantum state.
Given that Pij2 = 1, note that if a wave function is an eigenfunction of Pij, then the possible eigenvalues are 1 and –1. That is, for
![image0.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801fd_396883.image0.png)
an eigenfunction of Pij looks like
![image1.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801be_396884.image1.png)
That means there are two kinds of eigenfunctions of the exchange operator:
![image2.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801f4_396885.image2.png)
Now take a look at some symmetric and some antisymmetric eigenfunctions. How about this one — is it symmetric or antisymmetric?
![image3.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801c3_396886.image3.png)
You can apply the exchange operator P12:
![image4.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801e8_396887.image4.png)
Note that because
![image5.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801b8_396888.image5.png)
is a symmetric wave function; that’s because
![image6.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801ca_396889.image6.png)
How about this wave function?
![image7.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801aa_396890.image7.png)
Again, apply the exchange operator, P12:
![image8.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801d3_396891.image8.png)
Okay, but because
![image9.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801ae_396892.image9.png)
you know that
![image10.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801b4_396893.image10.png)
Here’s another one:
![image11.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801cd_396894.image11.png)
Now apply P12:
![image12.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801f1_396895.image12.png)
How does that equation compare to the original one? Well,
![image13.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801fa_396896.image13.png)
Therefore,
![image14.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801e5_396897.image14.png)
is antisymmetric.
What about this one?
![image15.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801f7_396898.image15.png)
To find out, apply P12:
![image16.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca8020f_396899.image16.png)
All right — how’s this compare with the original equation?
![image17.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801eb_396900.image17.png)
Okay —
![image18.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca80200_396901.image18.png)
is symmetric.
You may think you have this process down pretty well, but what about this next wave function?
![image19.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801bb_396902.image19.png)
Start by applying P12:
![image20.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801ee_396903.image20.png)
So how do these two equations compare?
![image21.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca801d0_396904.image21.png)
That is,
![image22.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca80206_396905.image22.png)
is neither symmetric nor antisymmetric. In other words,
![image23.png](https://cdn.prod.website-files.com/6634a8f8dd9b2a63c9e6be83/669d4a59931c231b3ca80206_396905.image22.png)
is not an eigenfunction of the P12 exchange operator.